Exercise 2-3
a)

$$
\begin{aligned}
& \left.\begin{array}{rl}
\text { idealgas } \rightarrow & P V=n R T \\
P=A v=A \frac{V}{n}
\end{array}\right\} \quad A=\frac{\Gamma_{n}^{n}=\frac{P V}{R T}}{V}=\frac{P^{2} V}{V R T}=\frac{p^{2}}{R T} \\
& A=\frac{p_{1}^{2}}{R T_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& P V=R T \\
& V=\frac{R T}{P} \longrightarrow V=\frac{R T}{A V} \rightarrow V^{2}=\frac{R T}{A} \\
& \\
& \qquad(2 V)^{2}=4 V^{2}=\frac{R}{A} \cdot(4 T) \\
& \text { fo } T \text { shauld have quaduyled } \\
& \downarrow \\
& \\
& t=4 T=800 \mathrm{~K}
\end{aligned}
$$

