$$
\begin{aligned}
& p=\frac{k T}{v-b}-\frac{a}{T v^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} \varphi}{\partial r^{2}}=0 \rightarrow T\left(\frac{-2 a 37 \nu^{2} v^{2}}{T^{2} \sigma^{6}}-\frac{-R(2 v-2 t)}{(v-l)^{4}}\right)_{1}=0 \\
& \frac{-6 a}{T^{2} v^{4}}=\frac{-2 k}{(v-l)^{3}} \\
& \begin{aligned}
2 R T^{2} v^{4}=6 a(r-b)^{3} \quad 2 v\left(2 a(v-l)^{2}\right) & =6 a(v-l)^{3} \\
4 a v(v-l)^{2} & =6 a(v-l)^{3}
\end{aligned} \\
& 2 v(v-l)^{2}=3(v-b)^{3} \\
& \left.\begin{array}{c}
2 v v^{2}+v b+b^{2}=3(v-b)=3 v-3 b \\
-v=-3 b \\
v=3 b \\
v_{c}=3 b
\end{array} \quad R t^{2} v^{3}=2 a(v-l)^{2}\right) \\
& R T^{2}{ }_{27} l^{3}=2 a(2 b)^{2} \\
& R T^{2} 2+b^{3}=8 a l^{2} \\
& 27 R T^{2} b=8 a \\
& T^{2}=\frac{8}{27} \frac{a}{R t} \\
& t_{c}=+\sqrt{\frac{8}{27} \frac{a}{R_{l}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\sqrt{\frac{2}{27}}-\sqrt{\frac{1}{24}}\right) \sqrt{\frac{a R}{b^{3}}} \\
& =\frac{1}{128}\left(\sqrt{\frac{2 \cdot 144}{27}}-\sqrt{\frac{1 \cdot 144}{24}}\right) \sqrt{\frac{a k}{b}} \\
& \frac{1}{126}\left(\sqrt{\frac{32}{3}}-\sqrt{6}\right) \sqrt{\frac{a k}{b}} \\
& =\frac{1}{12 l}(\sqrt{32}-\sqrt{18}) \sqrt{\frac{a k}{3 b}} \\
& =\frac{1}{12 k}(4 \sqrt{2}-3 \sqrt{2}) \cdot \sqrt{\frac{a k}{3 b}} \\
& =\frac{1}{12 b} \sqrt{\frac{2 a k}{3 b}}
\end{aligned}
$$

