

$$
\begin{aligned}
& \frac{2 R T(v-b)}{(v-b)^{4}}-\frac{a}{v^{2}(v-b)^{2}}-\frac{a v(3 v-2 b)}{v^{4}(v-b)^{2}}+\frac{a^{2}}{v^{4}(v-b) R T}=0 \\
& \frac{2 a(v-b)}{v^{2}(v-b)^{3}}-\frac{a}{v^{2}(v-b)^{2}}-\frac{a v(3 v-2 b)}{v^{4}(v-b)^{2}}+\frac{a^{2} v^{2}}{v^{4}(v-b) a(v-b)}=0 \\
& \frac{2 a}{v^{2}}-\frac{a}{v^{2}}-\frac{a}{v^{3}}(3 v-2 b)+\frac{a}{v^{2}}=0 \\
& 2 a-\frac{a}{v}(3 v-2 b)=0 \\
& 2 a=\frac{a}{v}(3 v-2 b) \\
& 2 a=3 a-\frac{2 a b}{v} \\
& a=\frac{2 a b}{v} \\
& v=2 b \\
& R T=\frac{a(v-b)}{v^{2}} \\
& T=\frac{a(2 b-b)}{2^{2} b^{2} k}=\frac{a b}{4 b k}=\frac{a}{4 b k} \\
& e^{-\frac{a}{R T_{v}}}=e^{-\frac{a 4 b R}{R a 2 b}}=e^{-2} \\
& P=\frac{R T}{v-b} e^{-\frac{a}{R T v}}=\frac{R a}{4 b R(2 b-b)} e^{-2}=\frac{a}{4 b^{2} e^{2}}
\end{aligned}
$$

