Lecture notes

Expansivity $\beta=\frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_{P}$
Also sometimes called the coefficient of volume expansion
Compressibility $\kappa=-\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_{T}$

For an ideal gas, $v=\frac{R T}{P}$
Thus, for an ideal gas, $\beta=\frac{1}{T}$ and $\kappa=\frac{1}{P}$

For a solid or a liquid, approximately, β and κ are nearly constant with T and P.
Equation of state: $v=v_{0}\left(1+\beta\left(T-T_{0}\right)-\kappa\left(P-P_{0}\right)\right)$

Volume increases linearly with T and decreases linearly with P.

