$\left(\frac{\partial T}{\partial v}\right)_{0} \cdot\left(\frac{\partial r}{\partial r}\right)_{T}\left(\frac{\partial v}{\partial T}\right)_{v}=-1$
b
Youle:Thompons cafficint $\mu=\left(\frac{\partial T}{\partial P}\right)_{h}$
$h=u+P_{v}$

$$
\begin{aligned}
& \left(\frac{\partial T}{\partial p}\right)_{h}\left(\frac{\partial p}{\partial h}\right)_{T}\left(\frac{\partial h}{\partial T}\right)_{p}=-1 \\
& \left(\frac{\partial T}{\partial p}\right)_{h}=\frac{-1}{\left(\frac{\partial p}{\partial h}\right)_{T}\left(\frac{\partial h}{\partial T}\right)_{p}}=\underbrace{\left(\frac{\partial h}{\partial P}\right)_{T}}_{C_{p}} \\
& f_{\sigma}\left(\frac{\partial T}{\partial p}\right)_{h}=0 \text { if ardorlyif }\left(\frac{\partial h}{\partial p}\right)_{T}=0
\end{aligned}
$$

$M h=u+P_{v}$

$$
\begin{aligned}
& d h=d u+P_{d v} \\
& d h=d u+R_{d} T \quad, \quad \text { a P Pdv }=R_{d T} \text { fom the idealgas law } \\
& d h-d u=R d T
\end{aligned}
$$

Winty the exact defferetish for $u=u(v, T)$ and $h=h(T, P)$, we get

$$
\begin{aligned}
& d u=\left(\frac{\partial u}{\partial v}\right)_{T} d v+\left(\frac{\partial u}{\partial T}\right)_{v} d T=\left(\frac{\partial u}{\partial T}\right)_{v} d T=c_{v} d T \\
& d h=\left(\frac{\partial h}{\partial p}\right)_{T} d p_{+}\left(\frac{\partial h}{\partial T}\right)_{p} d T=\left(\frac{\partial h}{\partial p}\right)_{T} d \varphi_{+}+c_{p} d T, a s\left(\frac{\partial h}{\partial T}\right)_{p}=c_{p}
\end{aligned}
$$

Illing this allis we get

$$
\begin{aligned}
& d h-d u=C_{p} d T+\left(\frac{\partial h}{\partial p}\right)_{T} d p-C_{v} d T=R d T+\left(\frac{\partial k}{\partial p}\right)_{T} d P=R d T \\
& \text { foyn what was guien above ad } C_{p}-c_{v}=R \text {, to } \\
& R d T+\left(\frac{\partial h}{\partial p}\right)_{T} d P=R d T, \\
& \text { which imphes that } \\
& \left(\frac{\partial h}{\partial P}\right)_{T} d P=o \\
& \text { Cading to } \\
& \left(\frac{\partial h}{\partial P}\right)_{T}=0
\end{aligned}
$$

