$\begin{aligned} & d U=T d S-P d V \\ & d u=T d s-P_{d v} \\ & P V=n R T\end{aligned} \longrightarrow T d s=d u+P d v$
$d_{s=\frac{d d+f n}{T}}^{T}$
$s=\int \frac{1}{T} d u+\int \frac{p}{T} d r$
$s=\int \frac{C_{v}}{T} d T+\int \frac{R}{v} d v$

$$
=\cos \left(\frac{f}{t}\right)+R R\left(\frac{T R}{T, p}\right)
$$

thivithe... $T_{d s}=d u+P d_{v}=d h-d\left(P_{v}\right)+P d v=d h-P d_{v}-v d P+P d v=d h-r d P$

$$
s=\int \frac{d h}{T}-\int \frac{v}{T} d P
$$

$$
\begin{aligned}
& =C_{p} h(T)-R h(p)+S_{0} \\
& =C_{p} h\left(\frac{T}{T_{0}}\right)-R h\left(\frac{p}{P_{0}}\right)
\end{aligned}
$$

