Calculate the value of n_{j} in which an oxygen atom confined to a cubical box 1 cm on each side will have the same energy as the lowest energy available to a helium atom confined to a cubical box $2 \times 10^{-10} \mathrm{~m}$ on each side.

$$
\begin{aligned}
& \varepsilon_{j}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}} n_{j}^{2}=\frac{\pi^{2} h^{2}}{2 m L^{\frac{2}{3}}} n_{j}^{2} \\
& \varepsilon_{j}\left(O_{2}\right)=\varepsilon_{1}\left(H_{e}\right) \\
& n\left(0_{2}\right) \frac{\pi^{2} \hbar^{2}}{2 m\left(0^{-2}\right)^{2}}=\frac{\pi^{2} \hbar^{2}}{2 m\left(2 \times 10^{-10}\right)^{2}} 3 \\
& \frac{n(02)^{2}}{324 \times 10^{-4}}=\frac{3}{4 u x \quad 4 \times 10^{-20}} \\
& n_{j}\left(O_{2}\right)^{2}=\frac{3+32}{4 \times 4} \times 10^{16} \\
& =6 \times 10^{16} \\
& n_{j}\left(O_{2}\right)=\sqrt{6 \times 10^{16}}=2,4 \times 108
\end{aligned}
$$

